History Tinylmp
00000 00000000000

LA

AL
COMP316/qi64

Concephs. of Prograrmming Lrgpacgpe
Imperative Programming Languages

Thomas Sewell
UNSW
Term 3 2024

Hoare Logic
000000

History Tinylmp Hoare Logic
90000 00000000000 000000

Imperative Programming

impero

Definition

Imperative programming is where programs are described as a
series of statements or commands to manipulate mutable state or
cause externally observable effects.

States may take the form of a mapping from variable names to
their values, or even a model of a CPU state with a memory model

(for example, in an assembly language).

History Tinylmp Hoare Logic
00000 00000000000 000000

The Old Days

Early microcomputer languages used a line numbering system with
GO TO statements used to arrange control flow.

History
00000

Factorial Example in BASIC (1964)

i —
o LY | N)

-
=

= H THEH GOTO

NN
e o T T ko N
——

Z A
=
=
—ALH 4+
=
=

1
;-_;_;
1
1

o o o
e N N N

M
=

History Tinylmp Hoare Logic
000e0 00000000000 000000

Dijkstra (1968)

Go To Statement Considered Harmful dyny

Key WDI'I:?.E and Phrases: go to statement, jump instruction,
branch instruction, conditional clause, slternative clause, repet-

itive elause, program intelligibility, program sequencing
CR Categories: 4.2 523 594 dyn

The structured programming movement brought in control
structures to mainstream use, such as conditionals and loops.

History

Tinylmp
0000e

00000000000

Factorial Example in Pascal (1970)

factorial;
integer;
integer;
integer;

Hoare Logic
000000

0000C 00000000000

History Tinylmp Hoare Logic

Syntax

We're going to specify a language Tinylmp, based on structured
programming. The syntax consists of statements and expressions.

Grammar

Stmt = skip Do nothing
| x := Expr Assignment
| var y-Stmt Declaration
| if Expr then Stmt else Stmt £fi Conditional
| while Expr do Stmt od Loop
| Stmt ; Stmt Sequencing

Expr := (Arithmetic expressions)

We already know how to make unambiguous abstract syntax, so
we will use concrete syntax in the rules for readability.

History Tinylmp Hoare Logic
00000 0e000000000 000000

Examples

Example (Factorial and Fibonacci)

. var m-var n-var | -
var j -
m:=1,n:=1;
var m - .
S 1:=1;

RS while i < N do
m:= 1, var t-t:=m;
while i < N do T

=i+l me=m

) ", n:i=m-+t;

m:=mXx i . .

od i=i+1
od
Yy

History Tinylmp Hoare Logic
00®00000000

Static Semantics
Types? We only have one type (int), so type checking is a wash.

Scopes? We have to check that variables are declared before use.

Anything Else? We have to check that variables are initialized
before they are used!

’ Indicates that no unsafe reads occur

’Set of initialized free variables‘

/U;Vl—sokwf/

’ Set of declared free variables‘

’Set of definitely written to free variables

Note: V C U

Histor Tinylmp Hoare Logic
00000 000e0000000 000000

Static Semantics Rules

xeu FV(e)C V
U;VFskipok~ 0 U;VFEx:=eok~ {x}
Uu{y};VFEsok~ W
U,V var y-sok~ W\ {y}

FV(e)C V U; V F st ok ~ Wy U; V F s ok ~ Wa
U;V I~ if e then 51 else s, fi ok ~ Wi N W
FV(e)C V U, VEsok~ W
U; VI while e do s od ok ~~ ()

U;VE s ok ~ Wy U; (VU W) F s ok ~~ Wa
U;VFEsiiso ok~ WU W,

History Tinylmp Hoare Logic
00000 0000e000000 000000

Dynamic Semantics

We will use big-step operational semantics. What are the sets of
evaluable expressions and values here?

Evaluable Expressions: A pair containing a statement to execute
and a state .

Values: The final state that results from executing the statement.
States: mutable mappings from states to values.

Tinylmp
00000800000

States

A state is a mutable mapping from variables to their values. We
use the following notation:

To read a variable x from the state o, we write o(x).

To update an existing variable x to have value v inside the

state o, we write (o : x — v).

To extend a state o with a new, previously undeclared variable

X, we write o - x. In such a state, (o - x)(x) is undefined.

To remove a variable x from the set of declared variables, we

write (o|x).

To exit a local scope for x, returning to the previous scope o
o|x if x is undeclared in o’

o7 =< (o]x) - x if x is declared but undefined in o’
(0 :x— d'(x)) if o/(x) is defined

Tinylmp
0000000000

Evaluation Rules

We will assume we have defined a relation o e || v for arithmetic
expressions, much like in the previous lecture.

(01,51) | 02 (02,52) | 03
(0,skip) | o (01,51:%2) I o3
(TFGUV (O’l-X,S)UUQ

(o,x:=e) | (6 :x—v) (o1,var x-s) oo|7*

all—elLv V#O (0'1,51)&02
(01,1if e then s else s, i) |} 07

01|—er (0’1,52)U,O'2
(01,1if e then s else s, i) |} 02

History Tinylmp Hoare Logic
00000 00000008000 000000

Evaluation Rules Pt 2

or-el0
(01,while e do s od) |} o1
orFelv v#0
(01,5) § 02 (02,while e do s od) | o3
(01,while e do s od) |} o3

50000 00000000800

History Tinylmp Hoare Logic

Big-Step vs Small-Step Semantics

Consider this (silly) infinite loop:

p = while 1 < 2 do
skip
od

Can we ever prove (o1, p) | 027 No. We can prove that by
induction.

If we had defined a small-step semantics instead, we would be able
to describe this non-termination situation.

It is not practical to define a denotational semantics for a program
with loops or recursion.

History Tinylmp Hoare Logic
00000 00000000080 000000

Alternative declaration semantics

What should happen when an uninitialised variable is used?

(c-y,var x-y :=x+1) 7?7

7
(oc-y-x,y:=x+1)§77
(c-y,var x-y :=x+1) 7?7

We can’t apply the assignment rule here, because in the state
o-y-x, o(x) is undefined.

History Tinylmp Hoare Logic
00000 0000000000 e 000000

Alternative declaration semantics
Crash and burn: (o -y,var x-y:=x+1) {

(01 'X;S) | o2

(01,var x-s) || 02|

Default value: (o -y,var x-y :=x+1) | (c-y):y—1

((o1-x):x—0,5) | o2

(01,var x-s) | 0|7t

Junk data: (o0-y,varx-y :=x+1)| (o-y):y— 3 (or 4, or
whatever we want. ..)

((1-x) : x> n,s) o2

(01,var x-s) | 02|

History Tinylmp 7 Hoare Logic

@00000

Hoare Logic

For a taste of axiomatic semantics, let's define a Hoare Logic for
Tinylmp (without var). We write a Hoare triple judgement as:

{v} s {9}

Where ¢ and v are logical formulae about states, called assertions,
and s is a statement. This triple states that if the statement s
successfully evaluates from a starting state satisfying the
precondition ¢, then the final state will satisfy the postcondition 1:

p(a) A(o,s) o’ = 1(o’)

History Tinylmp Hoare Logic
00000 00000000000 0e0000

Proving Hoare Triples

To prove a Hoare triple like:

{True}

i:=0;

m:=1;

while i # N do
=i+ 1;
m:=mxi

od

{m= N!}

We could prove this using the operational semantics. This is
cumbersome, and requires an induction to deal with the while
loop. Instead, we'll define a set of rules to prove Hoare triples
directly (called a proof calculus).

History Tinylmp Hoare Logic
00000000000 00000

Hoare Rules

(0,skip) | o {¢} skip {p}

(c1,51) oo (02,8) o3 {p}si{a} {a} 2 {9}

(01,51;%2) | 03 {o} s1is {¥}
cFelv
(o,x:=e) | (o6:x—v) {¢[x :==¢€]} x = e {p}

Continuing on, we can get rules for if, and while with a loop
invariant:

{onet st {9} {pA-e} s {¢} {onets iy}
{¢} if e then s; else s fi {Y¥} {¢} while e do s od {p A —e}

Consequence

There is one more rule, called the rule of consequence, that we
need to insert ordinary logical reasoning into our Hoare logic
proofs:

p=>a A{a}s{p} =9
{w} s {¢}

This is the only rule that is not directed entirely by syntax. This
means a Hoare logic proof need not look like a derivation tree.
Instead we can sprinkle assertions through our program and
specially note uses of the consequence rule.

Hoare Logic
000800

History
00000

Tinylmp
00000000000

Hoare Logic
000000

Factorial Example

Let's verify the Factorial program using our Hoare rules:

{True}
{1=0}i:=0;{1 =i}
{1=ilYm:=1,{m=i}
{m=il}
while i # N do{m =il Ni# N}
{mx (i+1)=(>(+1)}
i=i+1,
{mxi=i}
m:=mxi
{m=il}
od{m=ilAi=N}
{m= N}

note: (i + 1)l = il x (i + 1)

{enet si{o} {pA-e} s {9}

{¢} if e then s; else s fi {¢}

{olx :=e]} x:=e {p}

{oNe}s{p}

{¢} while e do s od {p A —e}

{r} s {o} {o} = {4}

{#} siis2 {9}

{a} s{B} B=7

Y=«

{v} s {v}

History Tinylmp Hoare Logic
00000000000 00000e

Forward-Directed and Backward-Directed

What is the tension between these two rules?

{elx = e]} x == e {¢}

{ene} st {¢} {pA—e} s {¢}
{¢} if e then s; else sp fi {¢}

It is convenient to write (most of) our rules so that they can
always be applied forwards or backwards. Dijkstra-style backward
propagation generally works better.

{p1} 1 {¢} {e2} = {¢}
{(e — ¢1) A (e —> p2)} if e then s; else sp fi {9}

	History
	

	TinyImp
	

	Hoare Logic
	

