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Imperative Programming

impero

Definition

Imperative programming is where programs are described as a
series of statements or commands to manipulate mutable state or
cause externally observable effects.

States may take the form of a mapping from variable names to
their values, or even a model of a CPU state with a memory model

(for example, in an assembly language).
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The Old Days

Early microcomputer languages used a line numbering system with
GO TO statements used to arrange control flow.
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Factorial Example in BASIC (1964)
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Dijkstra (1968)

Go To Statement Considered Harmful dyny

Key WDI'I:?.E and Phrases: go to statement, jump instruction,
branch instruction, conditional clause, slternative clause, repet-

itive elause, program intelligibility, program sequencing
CR Categories: 4.2 523 594 dyn

The structured programming movement brought in control
structures to mainstream use, such as conditionals and loops.
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Factorial Example in Pascal (1970)

factorial;
integer;
integer;
integer;
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Syntax

We're going to specify a language Tinylmp, based on structured
programming. The syntax consists of statements and expressions.

Grammar

Stmt = skip Do nothing
|  x := Expr Assignment
| var y-Stmt Declaration
| if Expr then Stmt else Stmt £fi Conditional
| while Expr do Stmt od Loop
| Stmt ; Stmt Sequencing

Expr := (Arithmetic expressions)

We already know how to make unambiguous abstract syntax, so
we will use concrete syntax in the rules for readability.
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Examples

Example (Factorial and Fibonacci)

. var m-var n-var | -
var j -
m:=1,n:=1;
var m - .
S 1:=1;

RS while i < N do
m:= 1, var t-t:=m;
while i < N do T

=i+l me=m

) ", n:i=m-+t;

m:=mXx i . .

od i=i+1
od
Yy
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Static Semantics
Types? We only have one type (int), so type checking is a wash.

Scopes? We have to check that variables are declared before use.

Anything Else? We have to check that variables are initialized
before they are used!

’ Indicates that no unsafe reads occur

’Set of initialized free variables‘

/U;Vl—sokwf/

’ Set of declared free variables‘

’Set of definitely written to free variables

Note: V C U
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Static Semantics Rules

xeu FV(e)C V
U;VFskipok~ 0 U;VFEx:=eok~ {x}
Uu{y};VFEsok~ W
U,V var y-sok~ W\ {y}

FV(e)C V U; V F st ok ~ Wy U; V F s ok ~ Wa
U;V I~ if e then 51 else s, fi ok ~ Wi N W
FV(e)C V U, VEsok~ W
U; VI while e do s od ok ~~ ()

U;VE s ok ~ Wy U; (VU W) F s ok ~~ Wa
U;VFEsiiso ok~ WU W,
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Dynamic Semantics

We will use big-step operational semantics. What are the sets of
evaluable expressions and values here?

Evaluable Expressions: A pair containing a statement to execute
and a state .

Values: The final state that results from executing the statement.
States: mutable mappings from states to values.
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States

A state is a mutable mapping from variables to their values. We
use the following notation:

To read a variable x from the state o, we write o(x).

To update an existing variable x to have value v inside the

state o, we write (o : x — v).

To extend a state o with a new, previously undeclared variable

X, we write o - x. In such a state, (o - x)(x) is undefined.

To remove a variable x from the set of declared variables, we

write (o|x).

To exit a local scope for x, returning to the previous scope o
o|x if x is undeclared in o’

o7 =< (o]x) - x if x is declared but undefined in o’
(0 :x— d'(x)) if o/(x) is defined
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Evaluation Rules

We will assume we have defined a relation o e || v for arithmetic
expressions, much like in the previous lecture.

(01,51) | 02 (02,52) | 03
(0,skip) | o (01,51:%2) I o3
(TFGUV (O’l-X,S)UUQ

(o,x:=e) | (6 :x—v) (o1,var x-s) oo|7*

all—elLv V#O (0'1,51)&02
(01,1if e then s else s, i) |} 07

01|—er (0’1,52)U,O'2
(01,1if e then s else s, i) |} 02
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Evaluation Rules Pt 2

or-el0
(01,while e do s od) |} o1
orFelv v#0
(01,5) § 02 (02,while e do s od) | o3
(01,while e do s od) |} o3




50000 00000000800

History Tinylmp Hoare Logic

Big-Step vs Small-Step Semantics

Consider this (silly) infinite loop:

p = while 1 < 2 do
skip
od

Can we ever prove (o1, p) | 027 No. We can prove that by
induction.

If we had defined a small-step semantics instead, we would be able
to describe this non-termination situation.

It is not practical to define a denotational semantics for a program
with loops or recursion.
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Alternative declaration semantics

What should happen when an uninitialised variable is used?

(c-y,var x-y :=x+1) 7?7

7
(oc-y-x,y:=x+1)§77
(c-y,var x-y :=x+1) 7?7

We can’t apply the assignment rule here, because in the state
o-y-x, o(x) is undefined.
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Alternative declaration semantics
Crash and burn: (o -y,var x-y:=x+1) {

(01 'X;S) | o2

(01,var x-s) || 02|

Default value: (o -y,var x-y :=x+1) | (c-y):y—1

((o1-x):x—0,5) | o2

(01,var x-s) | 0|7t

Junk data: (o0-y,varx-y :=x+1)| (o-y):y— 3 (or 4, or
whatever we want. .. )

((1-x) : x> n,s) o2

(01,var x-s) | 02|
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Hoare Logic

For a taste of axiomatic semantics, let's define a Hoare Logic for
Tinylmp (without var). We write a Hoare triple judgement as:

{v} s {9}

Where ¢ and v are logical formulae about states, called assertions,
and s is a statement. This triple states that if the statement s
successfully evaluates from a starting state satisfying the
precondition ¢, then the final state will satisfy the postcondition 1:

p(a) A(o,s) o’ = 1(o’)
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Proving Hoare Triples

To prove a Hoare triple like:

{True}

i:=0;

m:=1;

while i # N do
=i+ 1;
m:=mxi

od

{m= N!}

We could prove this using the operational semantics. This is
cumbersome, and requires an induction to deal with the while
loop. Instead, we'll define a set of rules to prove Hoare triples
directly (called a proof calculus).
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Hoare Rules

(0,skip) | o {¢} skip {p}

(c1,51) oo (02,8) o3 {p}si{a}  {a} 2 {9}

(01,51;%2) | 03 {o} s1is {¥}
cFelv
(o,x:=e) | (o6:x—v) {¢[x :==¢€]} x = e {p}

Continuing on, we can get rules for if, and while with a loop
invariant:

{onet st {9} {pA-e} s {¢} {onets iy}
{¢} if e then s; else s fi {Y¥} {¢} while e do s od {p A —e}




Consequence

There is one more rule, called the rule of consequence, that we
need to insert ordinary logical reasoning into our Hoare logic
proofs:

p=>a A{a}s{p} =9
{w} s {¢}

This is the only rule that is not directed entirely by syntax. This
means a Hoare logic proof need not look like a derivation tree.
Instead we can sprinkle assertions through our program and
specially note uses of the consequence rule.

Hoare Logic
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Factorial Example

Let's verify the Factorial program using our Hoare rules:

{True}
{1=0}i:=0;{1 =i}
{1=ilYm:=1,{m=i}
{m=il}
while i # N do{m =il Ni# N}
{mx (i+1)=(>(+1)}
i=i+1,
{mxi=i}
m:=mxi
{m=il}
od{m=ilAi=N}
{m= N}

note: (i + 1)l = il x (i + 1)

{enet si{o} {pA-e} s {9}

{¢} if e then s; else s fi {¢}

{olx :=e]} x:=e {p}

{oNe}s{p}

{¢} while e do s od {p A —e}

{r} s {o}  {o} = {4}

{#} siis2 {9}

{a} s{B} B=7

Y=«

{v} s {v}
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Forward-Directed and Backward-Directed

What is the tension between these two rules?

{elx = e]} x == e {¢}

{ene} st {¢} {pA—e} s {¢}
{¢} if e then s; else sp fi {¢}

It is convenient to write (most of) our rules so that they can
always be applied forwards or backwards. Dijkstra-style backward
propagation generally works better.

{p1} 1 {¢} {e2} = {¢}
{(e — ¢1) A (e —> p2)} if e then s; else sp fi {9}
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